Alfred's CP Library

This documentation is automatically generated by online-judge-tools/verification-helper

View on GitHub

:warning: src/jiangly/math/12C-Poly.hpp

Code

/**   多项式乘法
 *    2024-03-10: https://qoj.ac/submission/350298
**/
constexpr int P = 998244353;

int power(int a, int b) {
    int res = 1;
    for (; b; b /= 2, a = 1LL * a * a % P) {
        if (b % 2) {
            res = 1LL * res * a % P;
        }
    }
    return res;
}

std::vector<int> rev, roots {0, 1};

void dft(std::vector<int> &a) {
    int n = a.size();
    if (int(rev.size()) != n) {
        int k = __builtin_ctz(n) - 1;
        rev.resize(n);
        for (int i = 0; i < n; i++) {
            rev[i] = rev[i >> 1] >> 1 | (i & 1) << k;
        }
    }
    for (int i = 0; i < n; i++) {
        if (rev[i] < i) {
            std::swap(a[i], a[rev[i]]);
        }
    }
    if (roots.size() < n) {
        int k = __builtin_ctz(roots.size());
        roots.resize(n);
        while ((1 << k) < n) {
            int e = power(31, 1 << (__builtin_ctz(P - 1) - k - 1));
            for (int i = 1 << (k - 1); i < (1 << k); i++) {
                roots[2 * i] = roots[i];
                roots[2 * i + 1] = 1LL * roots[i] * e % P;
            }
            k++;
        }
    }

    for (int k = 1; k < n; k *= 2) {
        for (int i = 0; i < n; i += 2 * k) {
            for (int j = 0; j < k; j++) {
                int u = a[i + j];
                int v = 1LL * a[i + j + k] * roots[k + j] % P;
                a[i + j] = (u + v) % P;
                a[i + j + k] = (u - v) % P;
            }
        }
    }
}

void idft(std::vector<int> &a) {
    int n = a.size();
    std::reverse(a.begin() + 1, a.end());
    dft(a);
    int inv = (1 - P) / n;
    for (int i = 0; i < n; i++) {
        a[i] = 1LL * a[i] * inv % P;
    }
}

std::vector<int> mul(std::vector<int> a, std::vector<int> b) {
    int n = 1, tot = a.size() + b.size() - 1;
    while (n < tot) {
        n *= 2;
    }
    if (tot < 128) {
        std::vector<int> c(a.size() + b.size() - 1);
        for (int i = 0; i < a.size(); i++) {
            for (int j = 0; j < b.size(); j++) {
                c[i + j] = (c[i + j] + 1LL * a[i] * b[j]) % P;
            }
        }
        return c;
    }
    a.resize(n);
    b.resize(n);
    dft(a);
    dft(b);
    for (int i = 0; i < n; i++) {
        a[i] = 1LL * a[i] * b[i] % P;
    }
    idft(a);
    a.resize(tot);
    return a;
}
#line 1 "src/jiangly/math/12C-Poly.hpp"
/**   多项式乘法
 *    2024-03-10: https://qoj.ac/submission/350298
**/
constexpr int P = 998244353;

int power(int a, int b) {
    int res = 1;
    for (; b; b /= 2, a = 1LL * a * a % P) {
        if (b % 2) {
            res = 1LL * res * a % P;
        }
    }
    return res;
}

std::vector<int> rev, roots {0, 1};

void dft(std::vector<int> &a) {
    int n = a.size();
    if (int(rev.size()) != n) {
        int k = __builtin_ctz(n) - 1;
        rev.resize(n);
        for (int i = 0; i < n; i++) {
            rev[i] = rev[i >> 1] >> 1 | (i & 1) << k;
        }
    }
    for (int i = 0; i < n; i++) {
        if (rev[i] < i) {
            std::swap(a[i], a[rev[i]]);
        }
    }
    if (roots.size() < n) {
        int k = __builtin_ctz(roots.size());
        roots.resize(n);
        while ((1 << k) < n) {
            int e = power(31, 1 << (__builtin_ctz(P - 1) - k - 1));
            for (int i = 1 << (k - 1); i < (1 << k); i++) {
                roots[2 * i] = roots[i];
                roots[2 * i + 1] = 1LL * roots[i] * e % P;
            }
            k++;
        }
    }

    for (int k = 1; k < n; k *= 2) {
        for (int i = 0; i < n; i += 2 * k) {
            for (int j = 0; j < k; j++) {
                int u = a[i + j];
                int v = 1LL * a[i + j + k] * roots[k + j] % P;
                a[i + j] = (u + v) % P;
                a[i + j + k] = (u - v) % P;
            }
        }
    }
}

void idft(std::vector<int> &a) {
    int n = a.size();
    std::reverse(a.begin() + 1, a.end());
    dft(a);
    int inv = (1 - P) / n;
    for (int i = 0; i < n; i++) {
        a[i] = 1LL * a[i] * inv % P;
    }
}

std::vector<int> mul(std::vector<int> a, std::vector<int> b) {
    int n = 1, tot = a.size() + b.size() - 1;
    while (n < tot) {
        n *= 2;
    }
    if (tot < 128) {
        std::vector<int> c(a.size() + b.size() - 1);
        for (int i = 0; i < a.size(); i++) {
            for (int j = 0; j < b.size(); j++) {
                c[i + j] = (c[i + j] + 1LL * a[i] * b[j]) % P;
            }
        }
        return c;
    }
    a.resize(n);
    b.resize(n);
    dft(a);
    dft(b);
    for (int i = 0; i < n; i++) {
        a[i] = 1LL * a[i] * b[i] % P;
    }
    idft(a);
    a.resize(tot);
    return a;
}
Back to top page